# **Engineering New Catalysts for In-Process**Elimination of Tars

DOE OBP Thermochemical Platform Review Meeting June 7-8, 2005

Larry G. Felix
Gas Technology Institute





- Project Background
- Technical Feasibility and Risks
- Competitive Advantage
- Project Overview
- History and Accomplishments
- Plan/Schedule
- Critical Issues and Show-stoppers
- Plans and Resources for Next Stage
- Summary

- FY05 Appropriated Funding
  - Contract DE-FG36-04GO14314
- Focus on Syngas R&D Platform
  - Syngas Cleanup
- Crosscutting Technology for Multiple Pathways
  - Stage Gate Commercial Track
  - Detailed Investigation
- Project Scheduled Completion 3rd Quarter FY08



# Pathways and Milestones – C-level and Project Milestones

biomass program

<u>Ag Residues</u> <u>Perennial Crops</u> <u>Pulp and Paper</u> <u>Forest Products</u>

**Validate Gas Cleanup Performance** 

M 4.11.3 M 5.11.3 M 6.2.2 M 7.1.4

M 4.12.3 M 5.12.3 M 6.3.4

| Project Milestones         | Туре | Performance Expectations                                                                                                                                             | Due Date        |
|----------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Concept Feasibility        | D    | Make a new catalytic material that equals or exceeds the performance of NiO on olivine                                                                               | September, 2005 |
| Performance Optimization   | D    | Develop an optimal catalyst formulation from a refractory glass (e.g. olivine) and a well-known catalytic material (e.g. Ni)                                         | April, 2007     |
| Waste-Based Catalyst       | D    | Develop an optimal catalyst formulation utilizing a refractory, glass-based waste material (e.g. slag) as a substrate with a well-known catalytic material (e.g. Ni) | July, 2007      |
| Determine Market Potential | D    | Significantly reduce the cost of catalyst production                                                                                                                 | February, 2008  |
| Large-Scale Test           | D    | Demonstrate two superior catalyst formulations – one synthesized from base compounds and one from a waste-based material in a biomass gasifier                       | December 2007   |



# Technical Feasibility and Risks

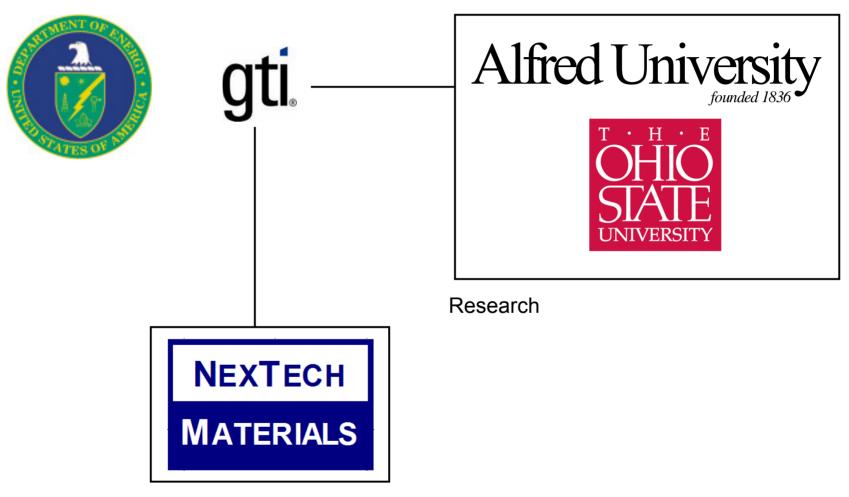
biomass program

### The project will be successful because:

- The project is based on a novel integration of existing, robust technologies to reduce technical risk
- The project team combines world-class expertise in glass technology, catalyst research, catalyst production, and biomass gasification
- The project utilizes compact glass-melting technology to reduce capital and production costs
- Existing research points to the feasibility of this approach for producing a new type of catalyst for tar reduction in biomass gasification

# Competitive Advantage

biomass program


## Advantages of this Approach to Catalyst Production

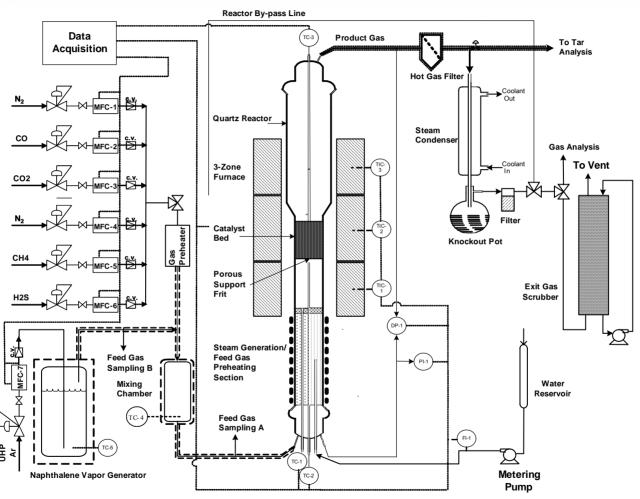
- Integration of current, separate manufacturing steps into one production process
- Incorporates a cost-efficient, high temperature, glassmelting technology
- Catalytic material is uniformly distributed throughout an attrition-resistant refractory glass substrate
- Ability to engineer specific properties into the glass substrate and the embedded catalytically-active material
- Low-cost of raw materials including some negative cost waste materials



## Research Program Participants

biomass program




Commercialization

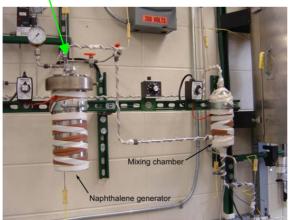
- Develop and demonstrate a new technology for engineering a new class of superior (cost-effective, attrition-resistant, catalytically-active) tar-cracking and reforming catalysts for use in fluidized-bed biomass gasifiers
  - Utilize compact, high-energy glass-making technology to combine catalytically-active materials (e.g. Ni, NiO, Fe, Cr) with inert, refractory glasses (e.g. olivine, engineered glasses, glassy waste materials)
  - Amenable to the economical preparation of commercial quantities of catalysts
  - Potential for extension to the design, engineering, and economical preparation of new catalysts for a variety of industrial applications

### **Project Activities**

- Resolved contractual issues (project started ~ 4/1/05)
- Subcontracts NexTech in place, resolving university IP issues
- Laboratory
  - Renovated catalyst testing facility. Shake-down tests in progress using naphthalene as a surrogate tar.
  - Secured samples of domestic and Austrian olivine,
  - Melting olivine, olivine-Ni and olivine-NiO mixtures
  - Refurbished an attrition resistance measurement unit (ASTM D 5757-95)

biomass program




Schematic diagram of the catalyst test facility



### biomass program

Catalyst test facility (before insulation)





Naphthalene Generator

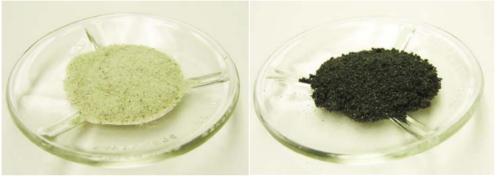


**Quartz Reactor and Oven** 



biomass program




R.D. Webb 2 kW "Red Devil" furnace: 2000°C in vacuum, 2200°C in Ar



### biomass program

#### **Domestic Olivine** – From Indiana, Reade, Inc.

As supplied



Heated to 1400°C (in vacuum, ~2% weight loss)

#### Austrian Olivine – Magnolithe GmbH

Bulk

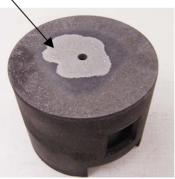




Magnolithe S-Kornungen (sintered at ~1100°C, 0.1 – 0.3mm)



biomass program


#### **HEATING DOMESTIC OLIVINE**

Heated at 1750°C in vacuo (13.2% weight loss)



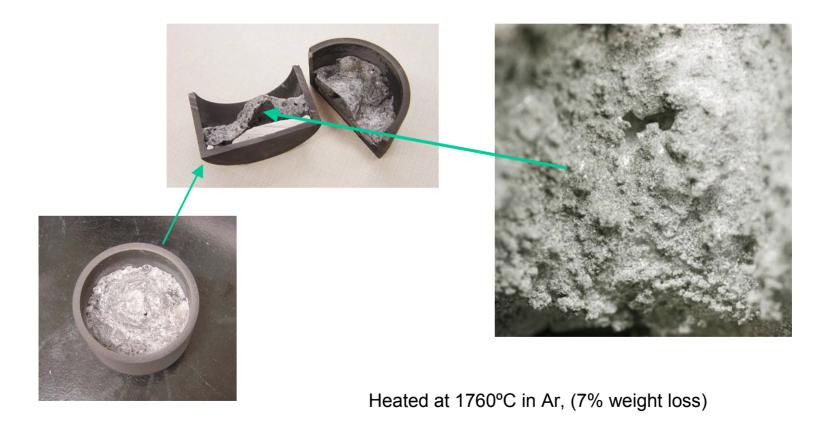
Condensed Fe

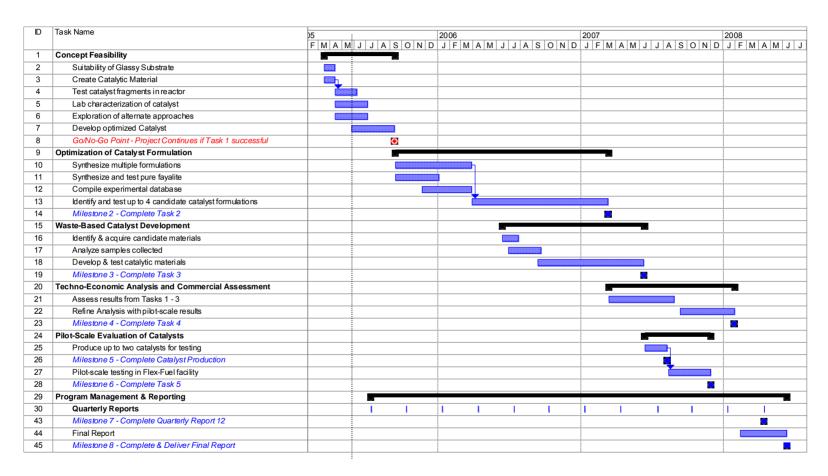






Heated at 1750°C in Ar (5.2% weight loss)


Heated at 1800°C in vacuo (~100% weight loss)




biomass program

#### **HEATING DOMESTIC OLIVINE WITH NI POWDER**

(First try, Ni:Olivine = 1:2)





Project Schedule, GO14314



## Critical Issues and Show Stoppers

- Synthesis of a NiO-olivine catalyst (or a similar formulation) that meets or exceeds the catalytic tar-cracking activity of NiO grafted onto olivine (by end of Task 1 – a Go/NoGo gate)
- Development of a more cost-effective technology for producing superior tar-cracking catalysts (extent to which this metric is met will be defined in Task 4).
- Production (at GTI) of sufficient quantities of up to 2 superior catalyst formulations for use as fluidizing media during pilot-scale biomass gasification tests in GTI's Flex-Fuel Test Facility (24 tons/day)



### Plans and Resources for Next Stage

biomass program

### If it works.....

- Work with project partner NexTech Materials Ltd. to develop and market a commercial product
- Investigate extending this approach to the design, engineering, and economical preparation of new catalysts for a wide range of applications including FT synthesis, petroleum refining, SOFC syngas reforming, and non-syngas catalysis

### **Summary Comments**

- We are still in the process of ramping up our experimental effort.
   However...
- Researchers in Europe are performing related R&D work, including L. Devi and Z. El-Rub (Netherlands), and C. Pfeifer (Austria) and they have been very helpful. L. Devi has provided much useful information on generating and using naphthalene as a surrogate tar. Pfeiffer is involved in pilot-scale work (at Güssing) which is directly relevant to this project. He has provided olivine and Ni-olivine samples to us, and identified a good source for olivine.
- We submitted an abstract: "Engineering Tar-Cracking Catalysts to Optimize Biomass Gasification," for presentation at the 14th European Biomass Conference & Exhibition, Paris, France, October 17-21, 2005.
- An abstract: "Engineering Tar-Cracking Catalysts to Optimize Biomass Gasification," submitted to the 6th International Symposium & Exhibition of Gas Cleaning at High Temperature, Osaka, Japan, October 20-22, 2005 was accepted for presentation.

### DE-FG36-04GO14314

Total project value (DOE funding): \$1,949,168

FY05 budget: \$622,000 (obligated)